

FICHA TÉCNICA CODEFLUX M81TG-NI1

FT-C20164N3 rev.4 - FECHA: 16/09/2020

Clasificación

Especificaciones AWS	Especificaciones EN		
AWS A5.28: E80C-Ni1	EN ISO 17632-A: T 46 4 1Ni M M 1 H5		

Descripción: Hilo tubular adecuado para la soldadura de aceros débilmente aleados al 1% de níquel, de grano fino y para aplicaciones a baja temperatura (-50°C). La presencia de níquel mejora la resistencia a la intemperie y el equilibrio electroquímico entre el metal depositado y el material base. Hilo de fácil soldabilidad, con elevada capacidad de depósito y velocidad de soldadura. Excelente aspecto del cordón, total ausencia de salpicaduras, indicado tanto para pasada simple como para multipasada en semiautomático, automático y robot. En multipasada no es necesario pulir el cordón entre una pasada y otra. A utilizar con gas de protección, mezcla Ar + CO₂.

<u>Aplicaciones:</u> En soldaduras de aceros de alta resistencia donde el PWHT es impracticable, por lo que estas soldaduras deben poseer un grado adecuado de resiliencia y de resistencia a la fisuración.

La adición de un 1%Ni favorece el refinamiento microestructural, con una mejor tolerancia a variaciones en el procedimiento, comparado con el metal soldado CMn corriente. El níquel también aumenta la resistencia a la intemperie y mejora el equilibrio electroquímico entre la soldadura y el metal base, y así minimiza la corrosión preferencial por el área soldada en entornos marinos. En aplicaciones offshore se suele requerir un máximo de 1.0%Ni (NACE MR0175).

También es recomendable aplicarlo donde los requisitos del diseño especifiquen un test de soldadura de alta resistencia y baja aleación de hasta –50°C, por ejemplo, en **construcciones offshore**, **tuberías (pipelines)** y **depósitos a presión.**

Materiales base a ser soldados:

ASTM		E	Otros	
A 333 Gr 6	API 5LX60	10025 S275	10113-2 S275	
A 334 Gr 6	API 5LX65	10025 S355	10113-2 S355	
A 350 Gr LF2	A 131 Gr A	10208-1 L290 G A	10113-2 S420	
A 350 Gr LF5	A 131 Gr B	10208-1 L360 G A	10113-3 S274	
API 5LX42	A 131 Gr D	10208-2 L290	10113-3 S355	
API 5LX46	A 131 Gr E	10208-2 L360	10113-3 S420	
API 5LX52		10208-2 L415		

Composición química típica del metal depositado (%):

ĺ	С	Mn	Si	S	P	Cr	Ni	Mo	Cu
ı	0.05	1.30	0.30	0.012	0.012	-	0.95	-	-

Microestructura: Recién soldado, la microestructura es ferrítica con un componente de ferrita acicular para una resiliencia óptima.

Propiedades mecánicas típicas:

		Límite elástico	Carga de rotura	Elongación en % 5d	Energía de impacto (Charpy V)				
GAS		Rs	Rm	A 5d	+ 20°C	0°C	-20°C	-40°C	-50°C
		(MPa)	(MPa)	%	(Julios)	(Julios)	(Julios)	(Julios)	(Julios)
M21	Metal depositado	500	605	26	-	-	95	60	

Recomendaciones para la soldadura: Precalentamiento y temperatura entre pasadas de 150°C. No requiere tratamiento térmico después de la soldadura.

Datos técnicos y Posición de soldadura:

Gas: Mezcla Argón + CO₂ y CO₂ (EN ISO 14175: M21 y C1)

Todas las posiciones.

Información Complementaria:

	EMBALAJE			
Diámetro Hilo (mm)	Voltaje	Intensidad de corriente (A)	Tipo Corriente (Polo +)	Peso Paq. (Kg)
1.0	15/28	90/240	DC	15
1.2	16/34	110/350	DC	15
1.4	17/35	130/360	DC	15
1.6	19/37	140/450	DC	15

Materiales Complementarios:

PROCESO	PRODUCTO	CLASIFICACIÓN AWS	CLASIFICACIÓN EN	
ELECTRODO SMAW	Microde 1 NiB	AWS A5.5 E8018-C3	EN ISO 2560-A E 46 6 1Ni B 4 2	
HILO MACIZO MIG / MAG Codemig 1Ni		AWS A5.28: ER80S-Ni1	EN ISO 14341-A: G 50 4 M G3Ni1	
VARILLA TIG	Codetig 1Ni	AWS A5.28: ER80S-Ni1	EN ISO 636-A: W 46 5 W3Ni1	
HILO TUBULAR FCAW	Codeflux R81T1-Ni1 Codeflux B81T5-Ni1	AWS A5.29: E81T1-Ni1 AWS A5.29: E81T5-Ni1	EN ISO 17632-A: T 46 4 1Ni P M 1 H5 EN ISO 17632-A: T 46 4 1Ni B M 2 H5	
ARCO SUMERGIDO SAW	Subarc S2 Ni1	AWS A5.23 E Ni1	EN ISO 14171-A S2Ni1	
FUNDENTE	Flux BF 5.1 Flux BF-10MW	AWS A5.17: EB2-F894- EB2-B2	EN ISO 14174: SA AB 1 67 AC H5 EN ISO 14174: SA FB 155 AC H5	

